Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Laryngoscope Investig Otolaryngol ; 8(2): 409-416, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2287805

ABSTRACT

Objectives: Describe demographic and professional factors predictive of burnout in academic otolaryngology before and during the COVID-19 pandemic. Methods: In 2018 and 2020, cross-sectional surveys on physician wellness and burnout were distributed to faculty members of a single academic institution's otolaryngology department. Faculty were dichotomized into low and high burnout groups for 2018 (n = 8 high burnout, 19%) and 2020 (n = 11 high burnout, 37%). To identify protective factors against burnout, three semi-structured interviews were conducted with faculty that reported no burnout. Results: Forty-two participants (59%) in 2018 and 30 out of 49 participants (62%) in 2020 completed the survey. In multivariate analysis of 2018 survey data, full and associate professors had significantly lower odds of high burnout (OR 0.06, 95% CI 0.00-0.53; p = .03). Female gender was associated with increased in odds of high burnout (OR 15.55, 95% CI 1.86-231.74; p = .02). However, academic rank and gender did not remain independent predictors of high burnout in the 2020 survey. We identified significant differences in drivers of burnout brought on by the pandemic, including a shift from a myriad of work-related stressors in 2018 to a focus on patientcare and family obligations in 2020. Interview analysis identified three themes in faculty who reported no burnout: (1) focus on helping others, (2) happiness over compensation as currency, and (3) gratitude for the ability to have an impact. Conclusion: Approximately 20% of faculty reported high burnout before the pandemic, and this proportion nearly doubled during the pandemic. The risk factors and themes identified in this study may help academic otolaryngologists prevent burnout. Lay Summary: Factors driving burnout among academic otolaryngologists during the COVID-19 pandemic transitioned away from research, conferences, and work outside business hours toward family and patient responsibilities. Females report higher burnout and full professors report lower burnout. Level of evidence: III.

2.
OTO Open ; 7(1): e37, 2023.
Article in English | MEDLINE | ID: covidwho-2274370

ABSTRACT

Objectives: To identify trends in timing of pediatric cochlear implant (CI) care during COVID-19. Study Design: Retrospective cohort. Setting: Tertiary care center. Methods: Patients under 18 years of age who underwent CI between 1/1/2016 and 2/29/2020 were included in the pre-COVID-19 group, and patients implanted between 3/1/2020 and 12/31/2021 comprised the COVID-19 group. Revision and sequential surgeries were excluded. Time intervals between care milestones including severe-to-profound hearing loss diagnosis, initial CI candidacy evaluation, and surgery were compared among groups, as were the number and type of postoperative visits. Results: A total of 98 patients met criteria; 70 were implanted pre-COVID-19 and 28 during COVID-19. A significant increase in the interval between CI candidacy evaluation and surgery was seen among patients with prelingual deafness during COVID-19 compared with pre-COVID-19 (µ = 47.3 weeks, 95% confidence interval [CI]: 34.8-59.9 vs µ = 20.5 weeks, 95% CI: 13.1-27.9; p < .001). Patients in the COVID-19 group attended fewer in-person rehabilitation visits in the 12 months after surgery (µ = 14.9 visits, 95% CI: 9.7-20.1 vs µ = 20.9, 95% CI: 18.1-23.7; p = .04). Average age at implantation in the COVID-19 group was 5.7 years (95% CI: 4.0-7.5) versus 3.7 years in the pre-COVID-19 group (95% CI: 2.9-4.6; p = .05). The time interval between hearing loss confirmation and CI surgery was on average 99.7 weeks for patients implanted during COVID-19 (95% CI: 48.8-150) versus 54.2 weeks for patients implanted pre-COVID (95% CI: 39.6-68.8), which was not a statistically significant difference (p = .1). Conclusion: During the COVID-19 pandemic patients with prelingual deafness experienced delays in care relative to patients implanted before the pandemic.

3.
JAMA Otolaryngol Head Neck Surg ; 148(4): 307-315, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1706644

ABSTRACT

IMPORTANCE: Emerging reports of sudden sensorineural hearing loss (SSNHL) after COVID-19 vaccination within the otolaryngological community and the public have raised concern about a possible association between COVID-19 vaccination and the development of SSNHL. OBJECTIVE: To examine the potential association between COVID-19 vaccination and SSNHL. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study and case series involved an up-to-date population-based analysis of 555 incident reports of probable SSNHL in the Centers for Disease Control and Prevention Vaccine Adverse Events Reporting System (VAERS) over the first 7 months of the US vaccination campaign (December 14, 2020, through July 16, 2021). In addition, data from a multi-institutional retrospective case series of 21 patients who developed SSNHL after COVID-19 vaccination were analyzed. The study included all adults experiencing SSNHL within 3 weeks of COVID-19 vaccination who submitted reports to VAERS and consecutive adult patients presenting to 2 tertiary care centers and 1 community practice in the US who were diagnosed with SSNHL within 3 weeks of COVID-19 vaccination. EXPOSURES: Receipt of a COVID-19 vaccine produced by any of the 3 vaccine manufacturers (Pfizer-BioNTech, Moderna, or Janssen/Johnson & Johnson) used in the US. MAIN OUTCOMES AND MEASURES: Incidence of reports of SSNHL after COVID-19 vaccination recorded in VAERS and clinical characteristics of adult patients presenting with SSNHL after COVID-19 vaccination. RESULTS: A total of 555 incident reports in VAERS (mean patient age, 54 years [range, 15-93 years]; 305 women [55.0%]; data on race and ethnicity not available in VAERS) met the definition of probable SSNHL (mean time to onset, 6 days [range, 0-21 days]) over the period investigated, representing an annualized incidence estimate of 0.6 to 28.0 cases of SSNHL per 100 000 people per year. The rate of incident reports of SSNHL was similar across all 3 vaccine manufacturers (0.16 cases per 100 000 doses for both Pfizer-BioNTech and Moderna vaccines, and 0.22 cases per 100 000 doses for Janssen/Johnson & Johnson vaccine). The case series included 21 patients (mean age, 61 years [range, 23-92 years]; 13 women [61.9%]) with SSNHL, with a mean time to onset of 6 days (range, 0-15 days). Patients were heterogeneous with respect to clinical and demographic characteristics. Preexisting autoimmune disease was present in 6 patients (28.6%). Of the 14 patients with posttreatment audiometric data, 8 (57.1%) experienced improvement after receiving treatment. One patient experienced SSNHL 14 days after receiving each dose of the Pfizer-BioNTech vaccine. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, findings from an updated analysis of VAERS data and a case series of patients who experienced SSNHL after COVID-19 vaccination did not suggest an association between COVID-19 vaccination and an increased incidence of hearing loss compared with the expected incidence in the general population.


Subject(s)
COVID-19 , Hearing Loss, Sensorineural , Hearing Loss, Sudden , Vaccines , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sudden/epidemiology , Hearing Loss, Sudden/etiology , Humans , Male , Middle Aged , Retrospective Studies , Vaccination/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL